SCHEME OF COURSE WORK

Course Details:

Course Title	Discrete Mathematical Structures							
Course Code	13BM1106 L T P C :4 1 0 4							
Program:	B.Tech.							
Specialization:	Information Technology							
Semester	I Semester							
Prerequisites	• Fundamentals of Set theory							
	Elementary algebra and Calculus							
Courses to whic	h it is a prerequisite Theory of Computation, Design and analysis of							
	Algorithms, Compiler Design, Principles of Programming							
	Languages, Data Structures.							

Course Outcomes (COs): At the end of the Course, Student will be able to:

- 1. Rewrite mathematical arguments using logical connectives and quantifiers and verify the validity of logical flow of arguments using propositional, predicate logic and truth tables.
- 2. Identify and give examples of various types of relations and describe various properties of the relations. Classify certain basic algebraic structures and discuss their properties.
- 3. demonstrate the ability to solve problems using Combinatorics
- 4. Determine isomorphism of graphs and spanning tree of a given graph using DFS / BFS. Also determine minimal spanning tree of a given graph.
- 5. Explain fundamental concepts of fuzzy sets and apply them to an expert system.

PROGRAM OUTCOMES:

A graduate of Information Technology Engineering will be able to

- **PO1:** Apply the knowledge of mathematics, science, engineering fundamentals and principles of Information Technology to solve problems in different domains.
- **PO2:** Analyze a problem, identify and formulate the computing requirements appropriate to its solution.
- **PO3:** Design and develop software components, patterns, processes, Frameworks and applications that meet specifications within the realistic constraints including societal, legal and economic to serve the needs of the society
- PO4: Design and conduct experiments, as well as analyze and interpret data
- **PO5:** Use appropriate techniques and tools to solve engineering problems.
- **PO6:** Understand the impact of Information technology on environment and the evolution and importance of green computing.
- **PO7:** Analyze the local and global impact of computing on individual as well as on society and incorporate the results in to engineering practice.
- **PO8:** Demonstrate professional ethical practices and social responsibilities in global and societal contexts.
- **PO9:** Function effectively as an individual, and as a member or leader in diverse and multidisciplinary teams.
- **PO10:** Communicate effectively with the engineering community and with society at large.
- **PO11:** Understand engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects.
- **PO12:** Recognize the need for updating the knowledge in the chosen field and imbibing learning to learn skills.

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	М										
CO-2	S	М										
CO-3	S	М										
CO-4	S	М										
CO-5	S	М										

S - Strongly correlated, *M* - *Moderately* correlated, *Blank* - *No* correlation

Assignment / Quiz / Seminar / Case Study / Mid-T
--

Teaching-Learning and Evaluation

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHIN G- LEARNIN G STRATE GY	Assessment Method & Schedule	
1	Statements and notations, connectives, Well formed formulas tautologies, Tautological Implications, equivalence of formulas, Duality law other connectives	CO-I	Show the following implication with constructing truth table $((P \lor \neg P) \rightarrow Q) \rightarrow ((P \lor \neg P) \rightarrow R) \Rightarrow Q \rightarrow R$		Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)	
2	Normal forms, Rules of inference Consistency of premises and Indirect method of proof.	CO-I	Obtain the principal conjunctive norm form and principal disjunctive normal form of $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$		Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)	
3	Rules of inference, Consistency of premises and Indirect method of proof. Predicates, the statement function, variables and quantifiers	CO-I	Show that $R \to S$ can be derived fr the premises $P \to (Q \to S), \neg R \lor P$ and Q	Lecture / Problem solving	Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)	
4	predicate formula, free and bound variables, universe of discourse , inference theory of the predicate calculus	CO-I	Show that $(\forall x)(p(x)\lor q(x))$ $\Rightarrow (\forall x)p(x)\lor (\exists x)q(x)$	Lecture / Problem solving	Assignment (Week 2 - 4) / Mid-Test 1 (Week 9)	
5	Relations, properties of binary relations in a set, Relation matrix and Graph of a relation	CO-II	If R and S are equivalence relations on the set A, prove that $(R \cap S)$ is an equivalence relation.	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz	
6	Partition and covering of a set, equivalence relations, Compatible relation, Composition of binary relations.	CO-II	If R is a Relation in the set of integer defined by $R = \{(x, y) x \text{ and } y \text{ integers and } (x - y) \text{ is divisible by}$ then prove that R is an equivale relation.	Lecture / Problem solving	Mid-Test 1 (Week 9)/ Quiz	
7	Partial ordering, partially ordered set Hasse diagrams	CO-II	Let $A = \{a, b, c\}$, $p(A)$ is the power set of A . Let \subseteq be the inclusion relation on the elements of $p(A)$. Draw Hasse diagram of $(p(A), \subseteq)$.	Lecture / Problem solving	Mid-Test 1 (Week 9) / Quiz	
8	Definitions and examples of some simple algebraic systems, Definition and Examples of semi group and monoid, general properties. Groups: Definitions and examples.	CO-II	Prove that the set of idempotent elements of M for any abelian monoid $(M,*)$ forms a submonoid.	Lecture / Problem solving	Mid-Test 2 (Week 10)/ Quiz	
9		Mid	Exam-I			

10			End the number of A 11-14 and 1	Lastant	Metrodo		
10	Basics of counting, Combinations and permutations, Enumerating Combinations and permutations with repetitions,	CO-III	Find the number of 4 digit numbers formed by the digits 1, 2, 3, 4, 5, 6, 7 and 8 which are more than 5000, if each digit is not used more than once in a number.	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Assignment (12-14)		
11	Multinomial theorems, Generating Functions of sequences, Calculating coefficients of generating functions,	CO-III	Find the generating function of the Fibonacci sequence.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Assignment (12-14)		
12	Recurrence relations, Solving Recurrence relations by substitution, generating functions and the method of characteristic roots	CO-III	Solve the recurrence $U_n - 8 U_{n-1} + 21 U_{n-2} - 18 U_{n-3} = 0$ for $n \ge 3$, $U_0 = 2$; $U_1 = 8$, $U_2 = 31$	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Assignment (12-14)		
13	Basic concepts: Graph, Directed Graph, Multi Graph, Degree of vertex and their properties,	CO-IV	In every graph, show that the sum of degrees of all the vertices is twice the number of edges.	Lecture / Problem solving	Mid-Test 2 (Week 18) / Assignment (12-14)		
14	Adjacency Matrix, Cycle Graph, Bipartite graphs, Isomorphism and Subgraphs,	CO-IV	Determine whether the following graphs are isomorphic	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz		
15	Trees and their properties, Spanning trees: DFS, BFS, Kruskal' s Algorithm for finding minimal Spanning tree.	CO-IV	Find the minimal spanning tree of the weighted graph	Lecture / Problem solving	Mid-Test 2 (Week 18)/ Quiz		
16	Introduction to Fuzzy Sets, Fuzzy Relations, Applications of Fuzzy set theory	CO-V	Given U ₁ = U ₂ = 1 + 2 + 3, - A ₁ = $.5/1 + 1$. /2 + $.6/3$ and A ₂ = 1./1 + $.6/2$, Find $A_1 \times A_2$		Mid-Test 2 (Week 18)/ Quiz		
17	Possibility theory, Possibility – Probability relationship	CO-V	Show that the fuzzy set A defined over \mathbb{R} with membership function $m_A(x) = \frac{u(x-\alpha) - u(x-(\alpha + \alpha))}{a}$ is convex	<u>a))</u> ,	Mid-Test 2 (Week 18)		
18	Mid Exam-II						
19/20	END EXAM						